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Using Knee Acoustical Emissions for Sensing Joint
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Abstract—In this paper, we present a pilot study evaluating
novel methods for assessing joint health in patients with Juvenile
Idiopathic Arthritis (JIA) using wearable acoustical emission
measurements from the knees. Measurements were taken from
four control subjects with no known knee injuries, and from
four subjects with JIA, before and after treatment. Time and
frequency domain features were extracted from the acoustical
emission signals and used to compute a knee audio score. The
score was used to separate out the two groups of subjects
based solely on the sounds their joints produce. It was created
using a soft classi�er based on gradient boosting trees. The
knee audio scores ranged from 0-1 with 0 being a healthy
knee and 1 being an involved joint with arthritis. Leave-one-
subject-out cross-validation (LOSO-CV) was used to validate the
algorithm. The average of the right and left knee audio scores
was 0.085� 0.099 and 0.89� 0.012 for the control group and group
with JIA, respectively (p< 0.05). The average knee audio score for
the subjects with JIA decreased from 0.89� 0.012 to 0.25� 0.20
following successful treatment (p< 0.05). The knee audio score
metric successfully distinguished between the control subjects
and subjects with JIA. The scores calculated before and after
treatment accurately re�ected the observed clinical course of
the subjects with JIA. After successful treatment, the subjects
with JIA were classi�ed as healthy by the algorithm. Knee
acoustical emissions provide a novel and cost-effective method
for monitoring JIA, and can be used as an objective guide for
assessing treatment ef�cacy.
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I. I NTRODUCTION

JUVENILE idiopathic arthritis (JIA) describes a clinically
heterogeneous group of arthritides. It is the most common

rheumatic condition in children and one of the more common
chronic illnesses of childhood affecting more than 50,000
children in the United States [1],[2]. The cause and pathogen-
esis of JIA are still poorly understood, but associations with
various genetic and environmental factors have been made.
There are seven de�ned categories of JIA, each with their own
distinct presentation, clinical signs, symptoms, and clinical
course. Identifying these categories coupled with recent studies
into the genetic contributors of JIA have allowed for more
precise treatment protocols; however, there is still signi�cant
variability within each of these categories. Each patient's
clinical course is unique. Often, patients with JIA experience
cyclical periods of active disease and remission. These unpre-
dictable �are-ups, coupled with the highly variable causes and
presentations have made predicting the long-term prognosis of
JIA dif�cult. This dif�culty in predicting prognosis exacerbates
the already dif�cult process of selecting an ideal treatment
regimen [3],[4].

The pathophysiologic changes to the joints caused by JIA
can lead to progressive joint destruction. The long-term sequela
of JIA is severe and includes chronic pain, joint immobility,
unstable articulation, and even disability. Fortunately, if JIA
is detected and treated properly early in its presentation, the
long-term consequences can be largely prevented [5],[6]. One
of the joints most commonly affected by JIA is the knee [6].
Unfortunately, there are very few quantitative means for readily
assessing the disease status in affected knees.

There are both invasive and non-invasive procedures for
knee-health evaluation. Various imaging technologies such
as computed tomography (CT), musculoskeletal ultrasound,
magnetic resonance imaging (MRI), and fMRI are non-invasive
evaluation methods, however they fail to provide early diag-
nosis, are prohibitively expensive for continuous monitoring,
and are inconvenient to perform [7]. One of the more common
invasive procedures for assessing knee health is arthroscopy.
Arthroscopy provides detailed information, but it is a small
surgical procedure, cannot be used on highly degenerated
knees and is both cost and time intensive [8],[9]. In a chronic
condition as variable as JIA, there is a compelling need for a
quantitative, unobtrusive, and affordable method for assessing
joint health.
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The use of acoustics—recording the sounds that the joints
make during movement—may provide such a method [10].
In the case of the knee, vibrations are emitted from the
mid-patellar region during active movements such as �exion
and extension [11]. These vibrations can be measured on the
surface of the skin as sound. These so called vibroarthographic
signals have been proposed as a possible diagnostic tool
for early diagnosis of joint disorders [12]. Since Blodgett
pioneered the technique in 1902, a number of advances have
been made in the �eld of vibroarthography [13]. Vibration
arthrometry was used to show substantial differences in injured
and healthy joints [14]. Later, the power pro�le was found
to be signi�cantly different between joints that were healthy,
had rheumatoid arthritis and degenerative arthritis. It was also
discovered that the majority of the signals occurred in the range
of 20-20,000 Hz [15]. The �eld of vibroarthography made a
large leap forward with the development and application of
piezoelectric accelerometers. This type of sensor is sensitive
to physical vibrations (such as those seen on the skin during
joint movement) and has less chance of registering external
noises as compared to electret or other microphones sensing
airborne pressure waves [16],[17].

Accurately recording the joint's acoustical emissions is
only part of what is required for the development of a
successful joint health monitoring suite. Those signals must
also be analyzed and given physiologic context, such that
this technique can be applied on patients. To analyze the
recorded signals, different signal processing and machine
learning techniques have been used. The techniques used
thus far include wavelet decomposition [18], time-frequency
analysis [19], Fourier analysis [20], autoregressive modelling
[21], statistical parameter investigation and neural networks
[22]. There is a signi�cant need for, and lack of understanding
about, which signal analysis technique is ideal for a given
acoustical emission signal, and more particularly for a given
disorder, such as JIA.

In order to contribute to the �eld of acoustical emission
signal analysis and non-invasive joint health monitoring, our
team has developed a novel hardware setup and signal anal-
ysis algorithm. In our hardware setup, a small piezoelectric
accelerometer is attached to the medial side of the patella
to acquire the acoustical emissions from the knee joint. The
recorded signals are then analyzed using our novel algorithm
that computes a knee audio score, which places the recorded
joint along a gradient from healthy to an involved joint with
arthritis. In this manuscript, we detail both our hardware setup
for recording knee acoustical emissions and our developed
machine learning algorithm for classifying the knees. We
validate our methods via a human subject study involving four
healthy control subjects and four subjects with JIA. Finally, to
investigate the ability of this technique for quantifying disease
progression and treatment response—essential components for
the monitoring of JIA—we present data acquired from the
subjects with JIA before and after treatment.

II. M ETHODS

A. Human Subject Protocol and Subject Demographics
The study was conducted under a protocol approved by the

Georgia Institute of Technology and Emory University Institu-
tional Review Boards. Ten subjects participated in this study.
However, due to a microphone failure, two control subjects
had to be excluded from the data analysis and thus data is
presented from only eight subjects. Although the dataset is
small, the number of instances was increased using appropriate
window and step sizes, which made it possible to train differ-
ent machine learning algorithms as previously done in [23],
[24],[25]. Four of the subjects were diagnosed with JIA by a
pediatric rheumatologist and four of the subjects were healthy
controls with no history of JIA or acute knee injuries. The
group with JIA consisted of three females (height=157.1� 8.8
cm, weight=48.9� 12.3 kg, and age=14.7� 2.1 years old), and
one male (height=175.7 cm, weight=65.3 kg, age=17 years
old). The healthy control group consisted of �ve females
(height=141.7� 10 cm, weight=34.1� 3.6 kg, and age=9.6� 1.8
years old) and one male (height=167.6 cm weight=54.5 kg,
age=11 years old). In order to monitor the changes in knee
acoustical emissions during the course of treatment, data were
acquired from the subjects with JIA a second time, 3-6 months
after initial measurements.

The data acquisition set up for each subject is shown in
Fig.1(a). To record the sounds produced by the joints, a
uniaxial analog accelerometer (3225F7, Dytran Instruments
Inc. Chatsworth, CA) was attached 2 cm medial to the patellar
tendon using KinesioTex tape (Kinesio Tex Gold, Kinesio,
Albuquerque, NM). This accelerometer has a broad bandwidth
(2Hz-10kHz), high sensitivity (100 mV/g), low noise �oor (700
� grms), miniature size and low weight (1 gram). To ensure
strong contact between the accelerometer and the subject's
knee, the accelerometer was additionally wrapped in MEDca
adhesive tape. The medial patellar location was selected due
to the relatively unimpeded route (only a thin layer of mus-
cle, tendon, and fat) to the articulating surface of the knee
(where inter-joint friction is theorized to produce the recorded
vibrations)[26],[27].

To record the knee acoustical emissions, the subjects per-
formed ten unloaded knee �exion/extension exercises, while
seated on a height-adjustable stool to prevent foot contact with
the ground. The signals from the accelerometer were sampled
at 108 kHz and recorded using a data acquisition module
(USB-4432, National Instruments Corporation, Austin, TX).
The exercise and recording protocol was repeated for both
knees for all subjects. The recorded signals were analyzed
using Matlab (MathWorks, Natick, MA) and Python (Python
Software Foundation, Beaverton, OR).

B. Signal Processing and Feature Extraction
The joint acoustical emissions were analyzed in the time

and frequency domains. Fig.1(a) shows a representative plot
of the time domain signal from one subject with JIA. The
acoustical emissions from knee joints have high energy and a
short duration (between 10-20 ms). One unique characteristic
of these signals is the audible “clicks” that have a spike-like
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Fig. 1. An overview of the methods used to acquire acoustical emissions from the knee and the algorithms used to analyze the signals. (a) The hardware
and sensor placement setup used to acquire knee acoustical emissions. An accelerometer is af�xed at the medial aspect of the patella using athletic tape. The
signals from the accelerometer are sampled and recorded using a data acquisition module. Signal processing and data mining algorithms are used to extract a
knee audio score from the acoustical emissions. This score can be used to monitor knee arthritis continuously during the course of treatment in order to titrate
care. (b) The signal analysis work�ow for the knee joint acoustical emissions. The signals were �ltered and separated into frames (frame length of 500ms and
50% overlap). The probability that a given frame belongs to an arthritic knee was estimated. This was done by extracting 50 audio features from the frame and
feeding these to a pre-trained soft classi�er. Finally, the knee audio score was calculated by averaging the estimated probabilities for all frames. (c) The knee
audio score was calculated for both knees of each subject (SR andSL ). The right and left knee scores were averaged to give the subject knee audio score.

appearance in the time domain plot. Additionally, these signals
have high bandwidth frequency content reaching up to 20 kHz,
which is fully expected for acoustical emissions [10],[15],[28].

Fig.1(b) details the signal analysis work�ow for knee acous-
tical emissions. The signals are pre-processed using a digital
�nite impulse response (FIR) band-pass �lter with 250Hz-
20kHz bandwidth. Artifacts related to sensor placement and
repositioning often observed at the the beginning and end of
the recordings are removed manually. These signals are then
separated into 500ms-long frames with 50% overlap, resulting
in N=102 frames. The frame length of 500ms ensures that a
single frame comprises an adequate sample of the variable
signal, including both a combination of silent segments of

the signal and those where clicks are observed. Additionally,
for this dataset, using 500ms-long frames allows for multiple
joint sound signatures to be present within a given frame
[28]. The 50% overlap is selected to increase the number of
instances used in processing. An overlap greater than 50%
could decrease the processing speed. Fifty signal features are
extracted from each frame and stored in the matricesX R
and X L for the right and left knees, respectively. The rows
of these matrices represent a single signal frame, and the
columns represent the 50 features extracted (see Feature Matrix
in Fig.1(b)).

The features extracted are categorized as either “time do-
main”, “spectral”, “MFCC” or “bandpower” features. The time
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domain features are the zero crossing rate (ZCR), energy, and
energy entropy (f 1-f 3). The most important characteristic of
these signals is the audible “clicks” that have a spike-like
appearance in the time domain plot, and this unique, consistent
`time domain' pattern of the signals result in distinctive time
domain features. On the other hand, the high bandwidth fre-
quency characteristics of the joint sounds result in them having
distinctive “spectral” features, which are the spectral centroid,
spectral spread, spectral �ux, spectral entropy and spectral
roll-off ( f 4-f 8). The “MFCC” features are composed of the
13 mel-frequency cepstrum coef�cients (f 9-f 21) which have
the ability to separate joint sound signatures from background
noise as previously shown in [28]. The “bandpower” features
consist of the signal power in 29 distinct frequency bands,
between 30 logarithmically spaced frequencies in the range of
250Hz-20kHz (f 22-f 50). These extracted features are detailed
in [28],[29].

C. t-Distributed Stochastic Neighbor Embedding (t-SNE)

The features extracted from the 500ms signal frames from
all subjects are analyzed using machine learning techniques.
For visualizing the ability of our feature set to distinguish
between the control group and group with JIA, dimensionality
reduction is performed using t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [30]. Each feature of our data set
represents one dimension. For this analysis, we reduce the
dimensionality of our data from �fty to two dimensions for
ease of visualization. We then construct a scatter plot of the
data with the two axes representing the two t-SNE dimensions
and each point representing one 500ms signal frame. Two
colors are used to categorically label the data points—JIA in
red and healthy controls in blue. If a particular feature set has
the ability to distinguish between control subjects and subjects
with JIA, the groups would form two separate clusters in the
scatter plot.

The dimensionality reduction technique that t-SNE employs
attempts to maintain the distances of points based on their
probabilities of being neighboring data points. Assuming that
x i is a point in the high dimensional space,x i choosesx j as its
neighbor with the conditional probabilitypi j j ; likewise, in the
low dimensional space, this probability can be represented as
qi j j . The t-SNE method aims to �nd the best low-dimensional
data representation for minimizing the mismatch between the
probabilities that two points are neighbors in high dimensional
space (pi j j ) and low dimensional space (qi j j ) [30]. These
probabilities represent a similarity metric between the two
points. The t-SNE method is our preferred dimensionality
reduction technique because, as shown in the literature, it
minimizes local distortions and preserves the details within
the data structure better that competing techniques, such as
principal components analysis (PCA) or isometric feature
mapping (ISOMAP) [31].

In order to visualize the dataset, we �rst concatenate the
matricesX R and X L from the right and left knees of all
subjects to form a matrixX all. As this matrix has features with
different physical units, we standardize all of the columns to
zero mean and unity variance. This allows all features to be

weighted equally during dimensionality reduction. We store the
labels corresponding to the rows ofX all in a vectory . A given
entry of y is labeled 0 if the corresponding frame belongs to
a healthy subject and 1 if it belongs to a subject with JIA.
Using all features, a scatter plot is plotted. The points of the
scatter plot are colored according to the vectory to investigate
if there is separation between the two different groups.

D. Knee Audio Score Calculation

A knee audio score is calculated to place the knees on a
gradient ranging from 0 to 1 where a score of 0 represents a
healthy, unaffected knee and 1 represents an involved knee
with arthritis. To calculate the knee audio score from the
features extracted from the acoustical emissions, we train a
classi�cation model. Signals acquired from the subjects in
the training set are separated into frames and �fty features
are extracted from each frame as explained previously. These
features are stored in the matrixZ train and their corresponding
labels are stored in the vectorw train. Z train andw train can then
be used to train the classi�cation model with the relationship
betweenZ train and w train. After training, the model can be
used to predict the label (healthy or JIA) of an incoming
frame. We selected a classi�cation method that supports “soft
classi�cation,” or the ability to estimate theprobability that
a given frame belongs to a subject with JIA [32]. Those
probabilities are used to calculate the knee audio score from a
recording. The knee audio score is the mean of the probabilities
across all the frames from a given subject's recording. We
expect this score to be higher for subjects with JIA compared
to control subjects. We also hypothesize that this score will
decrease with treatment.

The classi�cation model is a necessary component of our
knee sound analysis algorithm. The relationships observed in
this type of data are non-linear and high-dimensional making
more traditional classi�cation techniques (which often apply
linear methods) ineffective. We use the Extreme Gradient
Boosting (XGBoost) classi�cation which is a relatively new
machine learning algorithm [33]. XGBoost is an implementa-
tion of the gradient boosting machine learning algorithm [34]
which falls under a category of learning algorithms called
ensemble methods. In this type of algorithm, to predict a
variable, multiple estimators are simultaneously used rather
than the typical use of a single estimator [35]. In the XGBoost
algorithm, many decision trees are iteratively trained. This
iterative training allows the model to predict the residual errors
from the previous iteration and improve over time.

The assessment of the performance of the algorithm for clas-
sifying healthy vs. involved joints with arthritis is performed
using leave-one-subject-out cross-validation (LOSO-CV) [36].
In each fold of the cross-validation, one subject is omitted
and an XGBoost classi�er is trained using the data from both
knees of the remaining seven subjects. The trained model is
then used to classify the signal frames of the excluded subject's
knee acoustical emissions. The classi�ed frames are stored in
the vectorsyR;i and yL;i , for the right and left knees of the
i th subject. The same classi�cation model is used to estimate
the probability of JIA for each frame. These probabilities are
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Fig. 2. (a) The t-SNE visualizations of knee acoustical emission data from four control subjects and four subjects with JIA using all features. We plotted
representative signals and spectrograms from one knee of a subject with JIA (b), and two control subjects (c) and (d). These signals belonged to different
clusters on the t-SNE plots, which are labeled on (a). (b) and (d) fall into clearly separated clusters in the t-SNE plot (a) as (b) has consistent ”clicking” sounds
throughout, while (d) is mostly silent. (c) is silent with some clicking sounds which places these signals to a cluster close to (b) on the t-SNE plot.

stored in the vectorspR;i andpL;i for the right and left knees
of the i th subject.

The audio scores for the subject's knees are calculated by
averaging the contents of thepR;i and pL;i for the right and
left knees separately. An average knee audio score is also
calculated for each subject by averaging the audio scores of the
right and left knees (Fig.1(c)). A given subject is classi�ed into
the JIA group if the average knee audio score is greater than
0.5. For subjects with JIA, this process is repeated to calculate
the knee audio scores for the post-treatment recordings. The
cross-validation is completed by calculating knee audio scores
for all eight subjects, excluding one subject per fold. Note
that the post-treatment data for the JIA group is not used for
training, as the ground truth labels for this data is not known
certainly. The generalizability of our model is assessed by
calculating the accuracy of our algorithm in labelling each
frame. We also calculate the accuracy of our algorithm in
predicting whether a subject belongs to the JIA or control
groups.

E. Feature Importance Ranking

As was shown in Section II-D the knee audio score was cal-
culated using the XGBoost classi�er using �fty audio features.
The relative weighting of each of those features in the model
needs to be calculated to better understand which features are
most relevant for the classi�cation. All gradient boosting trees,
including the XGBoost classi�er train decision trees which
can be used to rank the features according to their relative
importance in the generated classi�cation algorithm. Typically,
the nodes of a tree divide using less important features while
the initial node divides on the most important feature. The
importance of features obtained from all the trees in the model
are averaged resulting in the �nal relative feature importance
scores [37]. These scores are applied to this particular data set
helps to discern which features are most important for properly
classifying joints with JIA.

We apply this XGBoost classi�er to evaluate which audio
features were most relevant for distinguishing between the
control subjects and subjects with JIA. The data from every
subject with JIA (excluding the follow-up data due to it lacking
a ground truth classi�cation) is used to train the classi�er
and the resulting model is used to generate relative feature
importance scores. No testing set is required to quantify feature
importance as we are not evaluating how well our model
generalizes. After ranking the �fty features, we analyze how
the top six features, which contributed the majority of the
classi�cation strength, differed between the control subjects
and subjects with JIA as well as the manner in which they
changed post-treatment.

F. Effect of Model Type
In order to evaluate the sensitivity of the results to the type

of classi�er used, we also train a neural network using the same
audio features. We use the estimated class probability output
of the neural network to score each audio frame as described
in Section II-D. We try varying the number of hidden layers
(1 and 2), number of neurons in the hidden layers (16, 32,
64), and number of epochs (20, 50, 100, 200) to classify the
recorded acoustic emission data. All the activation functions in
the hidden layers are chosen to be recti�ed linear unit (ReLU)
activation functions. The �nal layer's activation function is
chosen to be a sigmoid to get probability estimates as outputs.
The network is trained using a binary cross-entropy loss
function via a RMSprop optimizer [38]. We then �nd the best
combination and compare the cross-validated accuracy values
of the proposed approach and the neural network approach.

III. R ESULTS AND DISCUSSION

A. t-SNE Visualization of the Knee Acoustical Emissions from
Controls and Subjects with JIA

The data from the four controls and the four subjects with
JIA was visualized using t-SNE as described in Section II-C.
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Fig. 4. (a) Feature importance ranking showing the top �fteen features in terms of salient information provided for classi�cation. (b)-(g) Distributions of the
top six features for the control subjects and pre- and post-treatment subjects with JIA. The distributions were calculated using kernel estimation.

for the data recorded pre-treatment and 3-6 months post-
treatment (Fig.3(b)). Again, the data statistics for the right leg,
left leg and averaged knee audio scores are plotted. The right
knee audio score for these subjects decreased from 0.83� 0.26
to 0.27� 0.42 (p> 0.05 using Wilcoxon Test). The left knee
audio score for these subjects decreased from 0.96� 0.044 to
0.24� 0.34 (p< 0.05 using Wilcoxon Test). The average knee
audio score for these subjects decreased from 0.89� 0.012 to
0.25� 0.20 (p< 0.05 using Wilcoxon Test). Of note, each of
the post-treatment audio scores fell below our selected 0.5
classi�cation threshold and thus were classi�ed as healthy. The
before and after treatment scores were statistically signi�cant
except the right knee scores, where statistical signi�cance was
not present as one subject's score increased post-treatment.

C. Feature Importance Ranking

The �fteen most important features from the feature impor-
tance ranking are shown on Fig.4(a). Features from all sets
(time, spectral, MFCC and band power) can be seen within
the top �fteen features, showing the importance of a diverse
feature set. The Kernel Density Estimated distributions of the
top six features are shown for the control, pre-treatment JIA
and post-treatment JIA data [37]. It can be seen in Fig.4(b)
that control subjects have higher Zero Crossing Rate (ZCR)
than the subjects with JIA as the signals from the control
group are closer to the noise �oor. Fig.4(c) shows that the
energy distribution of the signal frames is slightly narrower
for the control subjects compared to the subjects with JIA.
This can be attributed to the fact that the subjects with JIA
have a more variable set of signal frames ranging from silent
to ones that contain clicks. The healthy subjects mainly contain
low energy (silent) signal frames. A similar observation can be
made for the spectral spread in Fig.4(d) for the same reasons.

In Fig.4(f), we see that the subjects with arthritis have lower
spectral rolloff on average than the controls. This might be a
similar phenomenon as white noise having a high bandwidth
since the healthy subjects have signals that are closer to the
noise �oor and thus a higher spectral rolloff. The differences
in MFCC-13 and band power-26 seen in Fig.4(e) and (g) are
due to the differences in the frequency content of signals
from the two groups. The differences seen in the feature
distributions (Fig.4(b)-(g)) between the pre-treatment JIA and
control groups demonstrates the ability of separating these
groups based on those features. The post-treatment data is
distributed similarly to the healthy control subjects indicating
that the treatment was successful and the patients with JIA
returned to their healthy baseline.

D. Effect of Model Type
The best result we obtained using a neural network was

72.9% cross-validated accuracy with 2 layers, 32 neurons and
100 epochs. As seen, we observed a great discrepancy between
the result of our proposed algorithm (92.3%) and the one
we calculated using neural networks (72.9%). Although using
neural networks is an appropriate approach for audio and
speech processing applications, it is not the best �t for this
study because of the limited size of our dataset. Nevertheless,
as we recruit more subjects for the future studies, we will have
a chance to apply deep neural networks properly as well.

IV. CONCLUSION

In this paper, we described the recording and analysis of
acoustical emissions from the knee joints of healthy subjects
and subjects with JIA. We demonstrated that acoustical emis-
sions acquired from the knee joint can potentially be used as
a quantitative metric in the assessment and monitoring of JIA.
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We �rst visualized knee acoustical emission data acquired
from control subjects and subjects with JIA using t-SNE plots.
We explored the ability of different feature sets to distinguish
between the two groups. Following this analysis, we designed
an algorithm to compute a knee audio score. This algorithm
utilizes a soft classi�cation model based on gradient boosted
trees. We showed that our algorithm can accurately distinguish
control subjects and subjects with JIA for our dataset using
LOSO-CV. We also demonstrated how the knee audio score
of four subjects with JIA changes before and after treatment.
Finally, to understand the contribution of individual audio
features to our algorithm, we performed feature ranking. This
analysis revealed that elements from all the feature sets that
we calculated contributed to some degree in the knee audio
score calculation.

This paper provides, for the �rst time to the best of our
knowledge, a framework for extracting a clinically-relevant and
actionable joint health score from acoustical emission signals
measured with miniature sensors that can be embedded into a
wearable system for home use. The approach leverages several
key innovative concepts, including the adaptation of a gradient
boost regression algorithm as a soft classi�er, and the use of t-
SNE as a means of discovering features of relevance from the
high-dimensional acoustical data. While the studies performed
were with a small group of patients, the results are already
statistically signi�cant and suggest that the approach holds
merit and should be tested and validated further in larger
populations. The concept of delivering a joint health score
to the physician or patient to assist in clinical decisions can
be extended beyond JIA to assistive rehabilitation following
musculoskeletal injury; such a joint health score can, for
example, be used to determine when an athlete rehabilitating
an acute injury can resume certain activities or intensities of
activities.

In future studies we will investigate how different methods
of interfacing the sensors to the skin affects the acoustical
emission signals. Furthermore, we will explore the feasibility
of integrating the sensors to a knee brace or sleeve for continu-
ous monitoring. We will also study the underlying physiology
and source of the knee acoustical emissions using cadaver
models. Most importantly, we will validate the statistically
signi�cant, but still preliminary, results from this paper in
a larger dataset of patients and controls. Upon completion
of rigorous testing and validation in a larger population of
subjects, the proposed approach can potentially be used to
deliver a joint health score to the physician or patient to assist
in clinical decisions.
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